Checkout the Quick Start Guide for a general overview of the technology.
Using Curl as an example you can get basic opinion detection using the following
command. This assumes you have your text in a text file called
some_file.txt
.
cat some_file.txt | \ curl -F 'input=<-' "http://opener.olery.com/language-identifier" | \ curl -F 'input=<-' "http://opener.olery.com/tokenizer" | \ curl -F 'input=<-' "http://opener.olery.com/pos-tagger" | \ curl -F 'input=<-' "http://opener.olery.com/polarity-tagger" | \ curl -F 'input=<-' "http://opener.olery.com/opinion-detector-basic"
By using the full pipeline the opinion detection should become better. In this case you will need the NER and NED and their support endpoints. Like this:
cat some_file.txt | \ curl -F 'input=<-' "http://opener.olery.com/language-identifier" | \ curl -F 'input=<-' "http://opener.olery.com/tokenizer" | \ curl -F 'input=<-' "http://opener.olery.com/pos-tagger" | \ curl -F 'input=<-' "http://opener.olery.com/constituent-parser" | \ curl -F 'input=<-' "http://opener.olery.com/ner" | \ curl -F 'input=<-' "http://opener.olery.com/ned" | \ curl -F 'input=<-' "http://opener.olery.com/property-tagger" | \ curl -F 'input=<-' "http://opener.olery.com/polarity-tagger" | \ curl -F 'input=<-' "http://opener.olery.com/opinion-detector"